on direct sums of baer modules

پایان نامه
چکیده

the notion of baer modules was defined recently

منابع مشابه

On quasi-baer modules

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

متن کامل

Direct Sums of Injective and Projective Modules

It is well-known that a countably injective module is Σ-injective. In Proc. Amer. Math. Soc. 316, 10 (2008), 3461-3466, Beidar, Jain and Srivastava extended it and showed that an injective module M is Σ-injective if and only if each essential extension of M(א0) is a direct sum of injective modules. This paper extends and simplifies this result further and shows that an injective module M is Σ-i...

متن کامل

A note on p.q.-Baer modules

A module MR is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal submodule of R is generated by an idempotent. Let R be a ring. Let α be an endomorphism of R and MR be a α-compatible module and T = R[[x;α]]. It is shown that M [[x]]T is right p.q.-Baer if and only if MR is right p.q.-Baer and the right annihilator of any countably-generated ...

متن کامل

on quasi-baer modules

let r be a ring,  be an endomorphism of r and mr be a -rigid module. amodule mr is called quasi-baer if the right annihilator of a principal submodule of r isgenerated by an idempotent. it is shown that an r-module mr is a quasi-baer module if andonly if m[[x]] is a quasi-baer module over the skew power series ring r[[x; ]].

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023